Nosso Programa Global de Incentivo à Pesquisa já está aberto. Se você deseja enviar um projeto, mas ainda têm dúvidas sobre como fazer a sua submissão ou quer entender mais sobre as áreas prioritárias de financiamento, temos uma boa notícia para você! O GFI Brasil realizou um workshop para tirar dúvidas gerais sobre o edital do programa e apresentar as quatro áreas prioritárias dessa edição. Você pode assistir aqui ao trecho do workshop onde explicamos cada uma delas. Abaixo, listamos o detalhamento completo das quatro áreas com todas as informações que você pode precisar.
Plataforma de produção: Plant-based
Setor de tecnologia: Formulação e fabricação de produtos finais
Para obter mais informações, consulte os seguintes recursos:
Pesquisas anteriores financiadas pelo GFI relacionadas a este tópico:
Desafio atual
Os sistemas de extrusão são relativamente bem estabelecidos. Eles foram dimensionados para alta produção de até 500 kg/h (McClements & Grossmann 2021) e são usados comercialmente com muitas proteínas vegetais. No entanto, existem oportunidades para melhorar a capacidade de processamento e texturização da extrusão.
A análise do GFI antecipando os requisitos de produção de 2030 para carne à base de plantas modelou que, se o mercado de carne à base de plantas atingisse 6% do volume total de produção de carne (25 milhões de toneladas métricas por ano) até 2030, a indústria de carne à base de plantas precisaria operar em menos 800 fábricas com cerca de 2.000 linhas de extrusão em escala comercial a um custo de pelo menos 27 bilhões de dólares. Essas previsões ressaltam a importância de aumentar os investimentos em infraestrutura e aumentar a capacidade e a eficiência da linha de extrusão.
A extrusão pode ser ainda mais otimizada para melhorar especificamente a estrutura da carne à base de plantas. A extrusão é considerada um método de texturização “de cima para baixo”, que estrutura as misturas de biopolímeros aplicando forças externas e tende a produzir fibras na escala milimétrica ou centimétrica (Dekkers et al., 2018), muito maiores do que as fibras micrométricas encontradas nos músculos dos animais (Bomkamp et al., 2021). Inovações no processo de extrusão são necessárias para elevar a carne à base de plantas para alcançar a paridade organoléptica com os cortes convencionais de músculo animal. No entanto, é notoriamente difícil elucidar como as proteínas interagem consigo mesmas e com outros ingredientes sob várias condições de temperatura, umidade e cisalhamento.
Solução proposta
Para tornar a carne vegetal uma solução ambiental escalável, a texturização de bases proteicas de alta qualidade deve ocorrer em capacidade de alto rendimento e fornecer estratégias inovadoras para replicar a textura e a aparência visual de cortes musculares convencionais de animais. Inovações recentes em extrusão demonstraram a promessa de que ela pode ser ainda mais otimizada para atender às demandas do consumidor. Os pesquisadores estão criando software juntamente com o uso de processamento de matriz exclusivo, otimizando geometrias de matriz e aplicando matrizes rotativas para aprimorar a estrutura da proteína vegetal extrudada. A indústria de carne à base de vegetais precisa urgentemente de mais inovações como essas. Estudos avaliando os mecanismos subjacentes para a formação de estruturas de proteínas vegetais fibrosas podem ajudar os pesquisadores a otimizar estrategicamente a extrusão.
Encorajamos propostas que demonstrem a viabilidade de inovações de processamento de extrusão em escala piloto e incluam um ciclo de vida ou análise técnico-econômica da metodologia de processamento.
As propostas bem-sucedidas articularão:
Plataforma de produção: Carne cultivada
Setor de tecnologia: Desenvolvimento de linhagem celular, Meios de cultura celular
Para obter mais informações, consulte os seguintes recursos:
Pesquisas anteriores financiadas pelo GFI relacionadas a este tópico:
Desafio atual
Relatos de linhagens de células-tronco miogênicas, adipogênicas, mesenquimais (MSC) e células-tronco embrionárias (ESC) de peixes e outros frutos do mar na literatura são relativamente escassos, os tempos de duplicação dessas células tendem a ser maiores em comparação com células de mamíferos. Muitas linhagens de células de peixes têm tempos de duplicação de vários dias, enquanto, por exemplo, o tempo de duplicação da linhagem de mioblastos de camundongos C2C12 é de aproximadamente 20 horas. Os longos tempos de duplicação representam um grande desafio tanto para os esforços de pesquisa de frutos do mar cultivados em escala de laboratório quanto para os que visam expansão comercial.
Além dos desafios impostos pelo crescimento lento das células, formulações de meios de cultivo que evitem o uso de soro e outros componentes derivados de animais são necessárias para que frutos do mar cultivados se tornem economicamente viáveis. O crescimento sem soro de células medaka foi obtido usando FGF2. No entanto, as taxas de crescimento nessas condições foram mais lentas do que o controle contendo soro, sugerindo que o FGF2 substituiu apenas parcialmente o soro. Mesmo na presença de soro, a diferenciação espontânea é observada em muitas células pluripotentes de de peixes (Chen et al. 2003a; Chen et al. 2003b; Parameswaran et al. 2007). A diferenciação prematura apresenta um desafio adicional para a produção de células em larga escala, esgotando o pool de células proliferativas.
A dificuldade para solucionar esses desafios torna-se ainda maior quando verificamos a falta de ferramentas de pesquisa desenvolvidas especificamente para espécies de peixes que são relevantes para alimentação, incluindo anticorpos para identificação de marcadores celulares, por exemplo. Da mesma forma, o conhecimento acerca dos tipos celulares existentes no músculo dos peixes é um ainda incompleto. Entender melhor as diferenças entre tipos de células semelhantes, a forma como elas interagem ao longo do desenvolvimento, quais são os melhores marcadores para cada tipo celular e os impactos sensoriais que cada tipo de célula terá após a maturação permitirá o progresso da área.
Desafios semelhantes existem para os invertebrados aquáticos, que em muitos aspectos receberam ainda menos atenção de pesquisa do que os peixes.
Solução proposta
Os pesquisadores podem empregar várias estratégias que resultem em uma proliferação mais rápida e assertiva de células de frutos do mar que são relevantes para a alimentação. Estes estratégias podem ser amplamente categorizados nas etapas de produção descritas a seguir e poderão ser selecionadas pelos pesquisadores com base na etapa com a qual eles mais se alinham:
Desenvolvimento e otimização da linhagem celular: Estabelecer e otimizar linhagens de células obtidas de animais doadores (peixes e outros frutos do mar relevantes para a alimentação) por manipulação direta ou seleção de fenótipos desejáveis dentro de uma população heterogênea para obtenção de células com características desejadas (ex: tempo de duplicação reduzido, que mantenham o balanço entre quiescência, proliferação e diferenciação, etc.).
Otimização da formulação do meio de cultura e condições de cultura para proliferação:
Desenvolver e/ou otimizar formulações de meio de cultivo adaptadas para o crescimento de células de frutos do mar com o objetivo de melhorar as taxas de proliferação e outras características relevantes do ponto de vista da produção em escala de frutos do mar cultivados.
Diferenciação: Entender melhor o potencial de diferenciação de diferentes tipos de células de frutos do mar, identificar potenciais tipos de células iniciadoras do processo, investigar células de cultivo simples, como fibroblastos, com potencial de transdiferenciação ou aquisição de características de células relevantes para produção de carne (Tsurukawa & Shimada 2022) (Saad et al. 2023), são conhecimentos que podem contribuir muito com a otimização das linhagens e formulações de meio.
No entanto, todas as três estratégias, e especialmente aquelas que dependem da transdiferenciação, podem ser difíceis de investigar adequadamente devido à falta de ferramentas necessárias e informações incompletas sobre as células. Assim, muitos dos primeiros passos para melhorar o desempenho das culturas de células de frutos do mar podem consistir principalmente em pesquisa básica sobre a identidade do tipo de célula (por exemplo, Farnsworth et al. 2020) e no desenvolvimento de ferramentas de pesquisa. Assim, encorajamos propostas que incluam investigações básicas sobre a identidade do tipo celular ou o desenvolvimento de novas ferramentas, seja como foco principal da proposta ou como meio de possibilitar outros experimentos.
As propostas bem-sucedidas articularão:
Nota: Esta área prioritária de financiamento é limitada a projetos focados principalmente em peixes ou invertebrados aquáticos, embora reconheçamos que muitos dos mesmos desafios existem para outros grupos de espécies. Abordagens comparativas que incluam outras espécies podem ser consideradas, mas estudos em que o foco principal são animais terrestres não são elegíveis para esta prioridade de financiamento.
Plataforma de produção: Carne cultivada, Fermentação
Setor de tecnologia: Desenvolvimento de cepas hospedeiras, linhas celulares, meios de cultura celular, matérias-primas
Para obter mais informações, consulte os seguintes recursos:
Pesquisas anteriores financiadas pelo GFI relacionadas a este tópico:
Desafio atual
O meio de cultura de células é atualmente o principal fator que contribui para o custo e impacto ambiental da produção de carne cultivada. Análises de ciclo de vida e avaliações tecno-econômicas sobre a produção em escala de carne cultivada indicam que esse problema pode ser minimizado se os meios de cultivo forem usados com eficiência , resultando em cenários em que a produção de carne cultivada pode ser competitiva em termos de custos e baixo impacto ambiental (Sinke et al. 2023; Vergeer et al, 2021; Tuomisto et al, 2022; Humbird, 2021). Nesses estudos, assume-se que o metabolismo das células é otimizado para a produção da biomassa e que os meios são, ao menos, parcialmente otimizados para os requisitos metabólicos de cada linhagem celular, alcançando assim o uso eficiente do meio. Assumindo essas condições as taxas de conversão alimentar tornam-se mais baixas. Assim, os nutrientes do meio são convertidos de forma mais eficiente, e com baixo desperdício, em biomassa celular.
No entanto, a maioria das pesquisas com carne cultivada feitas até o momento ainda não demonstraram essas condições na prática. Em vez disso, as pesquisas estão focadas no estabelecimento de linhagens celulares contínuas e na derivação de meios isentos de soro. Na primeira fase do desenvolvimento de meios sem soro, que já está em andamento na comunidade científica, a redução de custos de produção é atingida principalmente por meio da utilização de componentes do meio de qualidade alimentar. Substituindo componentes caros de grau farmacêutico por versões mais acessíveis e aumentando em escala a produção de fatores de crescimento (Swartz , 2023). Na segunda fase de desenvolvimento de meios de cultivo, que ainda precisa ser realizada, a redução de custos de produção de carne cultivada se dará principalmente pelo fornecimento eficiente de energia para as células usando componentes de meio de cultivo de baixo custo e da maneira mais metabolicamente eficiente possível. Espera-se que esta segunda fase de desenvolvimento de meios para carne cultiva represente um desafio de longo prazo para a indústria. Esse tipo de desafio também é frequentemente visto no desenvolvimento do processo de fermentação microbiana, mas estes já têm sido mais extensivamente explorados.
Solução proposta
Para formular meios e usá-los com eficiência é necessário uma profunda compreensão dos requisitos metabólicos de uma célula. Uma maneira de entender o metabolismo celular é criar um modelo metabólico em escala genômica (GEM). Trata-se de um modelo matemático capaz de mapear o metabolismo celular, incluindo o fluxo de metabólitos e gargalos nas vias metabólicas. Alguns organismos já possuem rascunhos de GEMs, mas requerem validação experimental adicional (por exemplo, salmão, bovino, camarão e frango). Outros GEMs já foram validados experimentalmente tornando-os mais robustos , como por exemplo modelos experimentais como células CHO, zebrafish. Esses GEMs existentes podem guiar a criação de novos GEMs, especialmente quando estes organismos se relacionam em um nível evolutivo e compartilham vias metabólicas e enzimas.
Em geral, um pré-requisito para criar e aprimorar GEMs inclui a coleta de dados upstream, como sequenciamento e anotação de genoma, estudos de metabolômica, transcriptômica e proteômica. Embora alguns desses dados, como anotações de genoma, já existam para espécies usadas na produção de alimentos convencionais, muitos outros dados estão incompletos e precisarão ser criados e curados para as espécies e células usadas na carne cultivada. Outro tipo de dado crítico para a engenharia metabólica da carne cultivada é a composição da biomassa das células no estado metabólico estacionário, que inclui medidas cuidadosas de massa de todas as macromoléculas celulares, incluindo ácidos nucléicos, proteínas, lipídios, carboidratos, coenzimas e metabólitos específicos da espécie..
Garantir a precisão desses dados pode resultar em GEMs que podem prever e validar experimentalmente resultados específicos, como taxa de crescimento ou acúmulo de biomassa, em conjunto com técnicas como análise de balanço de fluxo (FBA), análise de fluxo metabólico (MFA) e análise de gasto de meio (SMA). Coletivamente, essas técnicas podem informar os pesquisadores sobre como a energia é utilizada em diferentes células, qual a melhor forma de manipular ou otimizar a utilização de energia ou a composição do meio para atingir um determinado objetivo, como por exemplo, o aumento do acúmulo de biomassa. Os GEMs foram implementados com sucesso dessa maneira em outras indústrias para otimizar matérias-primas para uma variedade de objetivos finais (Huang, 2020; Tejera, 2020).
Em resumo, o meio pode ser formulado e otimizado para uso eficiente, estabelecendo um pipeline de engenharia metabólica. Este pipeline começa com a coleta de dados específicos para informar a criação de GEMs adaptados às espécies, tipos de células e, eventualmente, linhagens específicas de células usadas para produção de carne cultivada. Os GEMs podem ser continuamente refinados por meio de técnicas analíticas downstream, como análise de balanço de fluxo, análise de meio gasto e análise de fluxo metabólico. Finalmente, GEMs robustos podem ser adotados por pesquisadores na academia e na indústria para formular e otimizar meios sob medida para a produção de carne cultivada.
Incentivamos propostas de carne cultivada ou fermentação microbiana que possam garantir a acessibilidade de quaisquer conjuntos de dados e modelos relevantes de maneira ampla, depositando-os em bancos de dados ou repositórios abertos. Propostas que incluam validação experimental com componentes de meio de qualidade alimentar e modelagem de custos são incentivadas.
As propostas bem-sucedidas irão articular claramente:
Plataforma de produção: Fermentação
Setor de Tecnologia: Formulação de Meio; Projeto de Bioprocessos; Matérias-Primas, Ingredientes, Insumos
Para obter mais informações, consulte os seguintes recursos:
Pesquisas anteriores financiadas pelo GFI relacionadas a este tópico:
Desafio atual
Atualmente, a grande maioria dos processos de fermentação utilizam açúcares simples como fonte de carbono para o crescimento e metabolismo microbiano. No entanto, o uso de fontes de açúcares simples e utilizadas para alimentação coloca os produtos protéicos alternativos derivados da fermentação em competição com outras fontes alimentares. Além disso, o progresso na tecnologia de fermentação está levando a uma crescente bioeconomia, onde muitos produtos de base biológica são produzidos por fermentação. A competição potencial entre commodities de base biológica desafiará a sustentabilidade, as cadeias de suprimentos e a relação custo-benefício da bioeconomia (Lips, 2021).
Matérias-primas alternativas têm se mostrado promissoras de várias formas nos últimos anos. As fermentações gasosas usam fontes de carbonos simples, como metano ou monóxido de carbono, para alimentar microorganismos que produzem biomassa e moléculas de alto valor. Já os fungos demonstraram a capacidade de crescer em uma variedade de resíduos das indústrias alimentícia e resíduo florestal. Uma das principais espécies usadas em proteínas alternativas, Komagataella phaffii (anteriormente Pichia pastoris), foi originalmente desenvolvida para uso industrial devido à sua capacidade de metabolizar eficientemente o metanol retirado da indústria do petróleo (Cregg, 2012). Ainda assim, há uma necessidade e espaço para inovação no desenvolvimento e diversificação de matérias-primas relevantes para Proteínas Alternativas.
Os microrganismos fermentadores também usam nitrogênio como um bloco de construção essencial para biomassa e fermentação de precisão de proteínas e outros ingredientes. A maioria das matérias-primas de nitrogênio no mundo existe como amônio, uma fonte de nitrogênio criada pelo processo Haber-Bosch. Este processo de fabricação requer metano e é intensivo em energia, e há um desejo de desacoplar a produção alternativa de proteína de uma fonte de nitrogênio intensiva em carbono e energia. Como alternativa, o uso de matérias-primas produzidas biologicamente, como hidrolisados bacterianos ou vegetais, foi demonstrado em muitas fermentações (Zhang et al, 2022). As matérias-primas de nitrogênio que usam fluxos secundários com alto teor de nitrogênio bioprocessados e retiradas de uma variedade de indústrias e fontes têm o potencial de fornecer um nitrogênio sustentável e de baixo custo desacoplado do processo Haber-Bosch.
Solução proposta
Para dimensionar matérias-primas alternativas para a produção de proteínas alternativas derivadas da fermentação, é necessário adotar matérias-primas alternativas seguras e exclusivas para alimentos. Os desafios à segurança alimentar, especialmente de fluxos secundários agrícolas ou off-takes, podem assumir a forma de toxinas microbianas ou bioquímicas, como furfural ou aflatoxina. Estratégias de remediação ou prevenção para garantir a produção de proteínas alternativas seguras para alimentos a partir de fermentações eficientes são necessárias para a adoção e uso generalizado dessas matérias-primas alternativas. Inovações no fornecimento de carbono e nitrogênio para fermentação são de alta prioridade e interesse. As matérias-primas ideais seriam de baixo custo, amplamente disponíveis e compatíveis com plataformas alternativas de produção de proteínas nos estágios de comercialização e pesquisa e desenvolvimento.
Encorajamos propostas que demonstrem a viabilidade de inovações de matérias-primas alternativas em condições relevantes de fermentação e/ou em escala piloto e incluam um ciclo de vida ou análise técnico-econômica da metodologia de processamento.
As propostas bem-sucedidas articularão:
Todas as referências citadas acima podem ser encontradas no edital original: https://gfi.org/wp-content/uploads/2023/01/Research-Grant-Program-RFP-2023.pdf
Sobre o Programa:
O Programa Global de Incentivo à Pesquisa (GFI Research Grant Program) vai receber propostas até dia 21 de setembro. Neste ano, as pesquisas serão aprovadas por meio do mecanismo Field Catalyst, que consiste em financiamentos de projetos de até US$250.000 e 24 meses de duração. Os candidatos podem solicitar US$100.000 adicionais para fazer parceria com pesquisadores externos (que não receberam financiamento do GFI antes) e/ou partes interessadas do setor.
As propostas podem ser criadas e submetidas até dia 21 de setembro de 2023 através do nosso portal de candidaturas. Será necessário criar um perfil de usuário para acessar o formulário de inscrição. O edital completo, com todas as orientações e as demais informações podem ser acessadas neste link.